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Distortion of sonic bangs by atmospheric turbulence 
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Recorded pressure signatures of supersonic aircraft often show intense, spiky 
perturbations superimposed on a basic N-shaped pattern. A first-order scattering 
theory, incorporating both inertial and thermal interactions, is developed to 
explain the spikes. Scattering from a weak shock is studied fist .  The solution of 
the scattering equation is derived as a sum of three terms: a phase shift corre- 
sponding to the singularity found by Lighthill; a small local compression or 
rarefaction; a surface integral over a paraboloid of dependence, whose focus is 
the observation point and whose directrix is the shock. The solution is found to 
degenerate at  the shock into the result given by ray acoustics, and the surface 
integral is identified with the scattered waves that make up the spikes. The solu- 
tion is generalized for arbitrary wave-forms by means of a superposition integral. 
Eddies in the Kolmogorov inertial subrange are found to be the main source of 
spikes, and Kolmogorov’s similarity theory is used to show that, for almost all 
times t after a sonic-bang shock passes an observation point, the mean-square 
pressure perturbation equals ( A P ) ~  (tc/t)%, where Ap is the pressure jump across 
the shock and t ,  is a critical time predicted in terms of meteorological conditions. 
For an idealized model of the atmospheric boundary layer, t, is calculated to be 
about lms, a figure consistent with the qualitative data currently available. 
The mean-square pressure perturbation just behind the shock itself is found to be 
finite but enormous, according to first-order scattering theory. It is conjectured 
that a second-order theory might explain the shock thickening that actually 
occurs. 

1. Introduction 
The passage of a distant supersonic aircraft is marked by a sonic bang, so called 

because the pressure waves excited at successive instants by the motion of the 
aircraft crowd against an envelope and combine into a wave of great intensity 
and brevity. In the case of steady and level flight, the envelope is the Mach cone 
originating near the nose of the aircraft (the term Mach cone is being used rather 
loosely here, but it is good enough for descriptive purposes). The pressure field 
near the aircraft may have a complicated structure comprising alternate shocks 
and expansion waves, as shown in figure 1 (a) ,  but Whitham (1952, 1956) dis- 
covered that the field attains a simple and universal form at great distances from 
the aircraft. The waves merge and attenuate as they propagate outward, until 
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eventually a single expansion wave remains, sandwiched between two shocks. 
Viewed from a distance comparable to the altitude of the aircraft, the Mach cone 
appears as a thin conical shell, whose surfaces are the leading and trailing shocks. 
The shell thickness is depicted with great exaggeration in figure 1 (b) .  Whitham 
showed that the two shocks have equal strengths, that the expansion between 
them is uniform, and that they separate as the one-fourth power of distance from 
the aircraft. For the case of homogeneous and still air, he provided formulae for 
calculating the strength and separation of the shocks at  any point on the Mach 
cone in terms of the shape of the aircraft. Subsequent workers, using the approxi- 
mations of ray acoustics, generalized the formulae to allow for non-steady flight 

FIGURE 1. The Mach cone: (a)  viewed close to the airplane; ( b )  viewed from a distance 
comparable to the altitude of the airplane. ( b )  Shows the reflexion from the ground and 
the finite thickness of the conical shell (greatly exaggerated). 

(Lansing 1964), for refraction of the Mach cone in temperature gradients (Warren 
1965), and for convection of the Mach cone in winds (Friedman, Kane & Sigalla 
1963). Lilley (1965) presented a review of the comprehensive theory. 

The pressure signature of a supersonic aircraft is shaped like an N ,  according 
to Whitham’s theory, provided the craft is flying high enough for the asymptotic 
wave-form to be realized. Figure 2 represents the kind of signature that is pre- 
dicted theoretically: p ( t )  is the history of the net pressure at  an observation point 
fixed on the ground, and po is the ambient pressure. The difference p ( t )  -p ,  is 
heard as a sonic bang. Any point on the ground eventually receives a sonic bang 
if the Mach cone is not refracted upward by thermal gradients or winds. In  the 
absence of such refractive effects, the cone intersects the ground in a broad 
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hyperbola and reflects upward along the intersection as shown in figure 1 (b). 
Figure 2 can be regarded as applying to a point on the ground where the bang is 
loudest-directly under the flight path of the aircraft. The pressure at  the ground 
includes contributions from both incident and reflected waves and is double the 
pressure of the incident wave alone. The doubled pressure jump across the shocks 
will be 1-5-2-51b./ft.2 for the supersonic transports of the immediate future, and 
the separation between the shocks will be 200-300 ft. The speed of sound is about 
lOOOft./s at sea level, so the duration of the N-wave will be 200-300ms. 
Those estimates set the scales in figure 2.t 
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FIGURE 2. A typical theoretically predicted N-wave from a supersonic transport. 

By 1964, when detailed pressure signatures were recorded during supersonic 
flights over Oklahoma City in the United States, the theory of sonic bangs 
appeared tolerably complete. Kane & Palmer (1964) presented a comparison 
between the experimental data and Whitham’s theory. Similar data were ob- 
tained during Exercise Westminster in the United Kingdom (Webb & Warren 
1965). The most recent and extensive tests have been carried out over Edwards 
Air Force Base in the United States (Garrick & Maglieri 1968). All the data show 
that Whitham’s theory correctly predicts the large-scale features of sonic‘bangs : 
they are N-shaped whenever the theory predicts that they should be, and they 
have about the right amplitude and duration. Often, however, a high-pitched 
spiky fine structure is superimposed on the basic N-shape. The pressure excur- 
sions can be positive or negative, and those immediately behind the shocks tend 
to be especially large. As a consequence, three types of N-wave have been dis- 
tinguished in the literature and are shown in figure 3: (a)  peaked, which corre- 
sponds to a positive shock spike; (b) rounded, corresponding to a negative shock 
spike; ( c )  normal, corresponding to a shock spike that happens to be untypically 
small. 

It should be noted that the supersonic transports will be so large that the asymptotic 
wave-form may not always be realized : shocks generated midway along the fuselage may 
not coalesce with the leading shock before the wave reaches the ground (Carlson 1967). 
The resulting pressure signature would not be a clean N, but the difference has no bearing 
on the discussion of this paper, and the N-shape is retained in the figures for clarity. 

34-2 
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The impulse of the fine structure is much less than the impulse of the basic N ,  
so the spikes will impose negligible loads on window panes and such. The fine 
structure nevertheless may have an important bearing on the psychological 
impact of a sonic bang. The reason has to do with the physiology of hearing 
(Johnson & Robinson 1967). The ear and its associated nervous system can be 
regarded crudely as a series of oscillators tuned to Q octave bands in the frequency 
range 20-20 000 c/s. All the oscillators respond to an instantaneous pressure 
rise like the leading shock of an undeformed N-wave, but those tuned to high 
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t 
FIGURE 3. Typical recorded sonic-bang pressure histories: 

(a) peaked; ( b )  rounded; (c) normal. 

frequencies are excited only weakly. The high-pitched spikes that characterize 
deformed N-waves would have little effect on oscillators tuned to frequencies 
below, say, 100 c/s, but they could force higher-frequency oscillators much 
more violently than a simple jump would have done. A given energy imparted 
at a higher frequency is amplified by the nervous system into a much louder 
and more startling sound than the same energy imparted at  a low frequency, 
so high-pitched spikes containing relatively little acoustic energy could con- 
siderably increase the objectionable quality of a sonic bang. 
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Five curious attributes are clues to the origin of the experimentally observed 
fine structure: 

(1)  Perturbations from the basic N-shape are random. The spikes fluctuate 
rapidly as the N-wave passes from point to point along the ground, and they 
take on either sign regardless of the direction of the wind or the thermal gradient 
(Garrick & Maglieri 1968). 

(2) The amplitude of the pressure perturbation at  the leading or trailing shock 
tends to be large, often comparable to the pressure jump that would have 
occurred across an undeformed shock. The amplitude of the perturbations 
decreases rapidly behind the shock. 

(3) The duration of the spike behind a shock is very short, say 5-30ms, 
corresponding to a length scale in the incident pressure wave of 5-3Oft. (the 
length scale is the speed of sound times the duration measured at a fixed point; 
the speed of the aircraft is irrelevant, because the spiky structure is not convected 
rigidly over the ground). The duration and the length scale of the spikes increase 
steadily behind the shock (figure 3), but the duration of a spike is never more 
than a fraction of the total duration of the N-wave. 

FIGURE 4. Pressure history recorded from a microphone 50 ft. or so above the ground. 

(4) The perturbations associated with the leading shock are exactly the same 
as those associated with the trailing shock (Kane & Palmer 1964). If the leading 
shock is peaked, then the trailing shock is peaked, and so on. 

(5) In  the course of Exercise Westminster, microphones were located not only 
on the ground, where pressure signatures of the kind shown in figure 3 were 
recorded, but also on masts at  distances 30-5Oft. above the ground. Above the 
ground there is a time delay between the incident and reflected waves, and the 
pressure history has a more complex shape, of which figure 4 is an example 
(cf. Webb & Warren 1965, figures 7,15,  etc.). The first and third shocks from the 
left are the leading and trailing shocks of the incident wave, and the second and 
fourth shocks are associated with the reflected wave. The perturbations associated 
with the leading and trailing shocks of the incident wave are the same. The 
perturbations associated with the two shocks of the reflected wave are also the 
same as each other, but they often bear little resemblance to the perturbations 
associated with the incident N-wave. Figure 4 shows such a disparity. 
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At first glance those five attributes seem paradoxical. Attribute (1) strongly 
suggests that random eddies or temperature inhomogeneities distort the N-wave 
as it propagates through atmospheric turbulence on its way from the aircraft to 
the ground. That conclusion is consistent with attribute (4), since the turbulence 
is certainly ‘frozen’ during the 200 ms passage time of the N-wave. If turbulence 
does distort the N-wave, on the other hand, it seems strange that the mean winds 
and temperature gradients fail to impose a significant average distortion. The 
mean wind is almost always much stronger than turbulent velocity fluctuations, 
and in any case the acoustic effects of turbulence are usually very small, being 
proportional to some power of a typical fluctuation Mach number. The Mach 
number of atmospheric turbulence, which is confined mostly to a surface layer 
1000-3000 ft. thick, is rarely greater than 1/200 under ordinary meteorological 
conditions (Lumley & Panofsky 1964, chapter 4). One would therefore expect 
the perturbations due to turbulence to be very small, in contradiction with 
attribute ( 2 ) .  According to attribute (3), moreover, the length scale of the random 
spikes in the pressure signature is many times smaller than the average scale of 
the energy-bearing eddies in the atmospheric boundary layer. Finally, attribute 
(5) suggests the puzzling (and erroneous) conclusion that only disturbances in the 
first 50 ft. above the ground are responsible for the distortion. Large-scale, 
weakly compressible turbulence appears not only to produce a fine-scale, high- 
amplitude distortion, but to do so in the lowest stratum of the boundary layer. 

The paradox is only apparent. Acoustic scattering theory, studied by Lighthill 
(1953) and others, is applied in the following sections to explain the five attributes 
listed above. All strata of the atmospheric boundary layer contribute to the 
scattering, and eddies in the Kolmogorov inertial subrange, rather than the 
energy-bearing eddies, are the primary source of N-wave spikes. The assumptions 
of local isotropy and of similarity in the inertial subrange permit a quantitative 
and realistic statistical description of the distortions. 

2. Inertial and thermal scattering 
In  order to apply scattering theory to the sonic-bang problem without undue 

complication, it is necessary to make a basic assumption about the location of the 
turbulence that distorts the N-wave. The turbulence is assumed to be concen- 
trated near the ground in a boundary layer of thickness much less than the altitude 
of the aircraft and also much less than the scale height of the atmosphere. The 
cruising altitude of the supersonic transports will be above 50,00Oft., the scale 
height of the atmosphere is 30,00Oft., and the thickness of the atmospheric 
boundary layer is likely to be 3000ft. or less (Zilitinkevich, Laiktman & Monin 
1967; Lumley & Panofsky 1964, pp. 74-75). This first assumption therefore will 
be strongly satisfied, except perhaps in unusual cases when the N-wave descends 
through towering cumulus clouds or through a jet stream surrounded by intense 
clear-air turbulence. Those cases are excluded from the analysis. An immediate 
consequence of the assumption is that gravitational variations in the ambient 
pressure and density of the air, which are significant over altitudes comparable 
t o  the scale height, can be neglected throughout the thin scattering region. 
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A second consequence is that all the scattering occurs far from the aircraft, in 
a region where the N-wave is weak. A third consequence is that the curvature of 
the Mach cone (figure 1) is negligible in the scattering region. A patch of the 
conical shell can be regarded as a wave travelling in a direction normal to the 
shock fronts, away from its point of origin on the flight path of the aircraft. As 
it passes through the scattering region in the last several seconds of its journey 
from the aircraft to the ground, the patch behaves as a plane acoustic wave. The 
effect of non-linear steepening, which causes the wave to develop an N-shape as 
it travels from the aircraft to the scattering region, has no time to alter its shape 
further.? Random fluctuations in the boundary layer cause the final distortions, 
which appear as spikes in the pressure history recorded on the ground. 

If the pressure distortions are sufficiently weak, they can be treated as secon- 
dary waves scattered from the incident N-wave as it interacts with fluctuations 
in the turbulent boundary layer. It is then possible to write the net pressure 
excursion p - p o  as the sum of an incident pressure wave p N  satisfying the 
homogeneous wave equation and a scattered wave ps  forced by the interaction 
between the incident wave and the fluctuations: 

p -po = pN+p'S. 

The assumption that p N  B ps  is a second major restriction on the analysis. This 
second assumption is sometimes violated in practice as figure 3 shows, but the 
resulting theory correctly accounts for the origin of N-wave distortions, if not 
for their subsequent interaction with the background turbulence. Neglect of 
such 'second scattering ' results in a, tractable first-order scattering theory. 

Two kinds of fluctuation cause scattering : momentum fluctuations associated 
with the eddy motion, and thermal fluctuations due to convective heating fromthe 
ground. The two kinds of scattering, which may be called inertial scattering and 
thermal scattering, are discussed at  length in a lucid review by Batchelor (1957). 

A treatment of inertial scattering involves splitting the net velocity into 
a rotational field u4 associated with the atmospheric turbulence and an acoustic 
field vi associated with the N-wave. As the N-wave passes an eddy, the local 
momentum flux changes by an amount p(ugvj + uivg), where p is the density. The 
local pressure changes accordingly, and the pressure change then radiates away 
as an acoustic wave. Since atmospheric eddies swirl at very low Mach numbers, 
the turbulent field ui can be taken as incompressible, and the local density p can 
be replaced with its ambient value po in the expression for the momentum flux 
change. 

The connexion between thermal fluctuations and scattering is somewhat less 
direct. Suppose that convection of heat from the ground causes the local tempera- 
ture T to depart by an amount 0 from its ambient value To. The temperature 
fluctuations 8 in turn give rise to inhomogeneities in density and speed of sound, 

t This assertion needs to be qualified for regions immediately behind the N-wave 
shocks. Acoustic waves following a shock tend to gain on the shock and disappear into it 
(Lighthill 1956). For every lb./ft.a of its strength, a weak shock in air consumes about 
0.25 ft./s of a trailing wave pattern. Non-linear steepening is likely to dominate scattered 
waves arriving in the first 1-2 ms after the passage of a shock but to have little effect on 
those arriving subsequently. 



536 8. c. Grow 

the properties of a medium relevant to acoustic wave propagation. The speed of 
sound c ,  for example, can be written as the sum of its ambient value co and a 
thermally induced fluctuation ce, Thermally induced changes in density and 
speed of sound are not independent. The heated air is free to expand, so the 
pressure cannot depend directly on 8. For a nearly perfect gas like air, the com- 
bination pca is proportional to pressure and is therefore independent of 8, Changes 
in p are related to Ce and need not appear separately in the scattering equation. 
Thermally scattered waves arise as fluctuations in the speed of sound accelerate 
or retard the advancing N-wave. 

The comprehensive wave equation that describes both inertial and thermal 
scattering, namely 

is the starting-point of this investigation. Equation (2.1) follows from equations 
(25) and (45) in the review by Batchelor (1957) and is derived from thefundamen- 
tal equations of motion in an earlier version of this paper (Crow 1968). Equation 
(2.1) has the expected form of an inhomogeneous wave equation for ps. The 
forcing function on the right-hand side couples inertial and thermal fluctuations 
to quantities, superscribed by N, associated with the undeformed N-wave. The 
incident pressure and velocity fields, @’ and $, are related to one another by the 
familiar equations of linear acoustics, and both obey the homogeneous wave 
equation. The scattered density and velocity fields corresponding to p s  are not 
related to ps, inside the turbulent region, by the equations of linear acoustics, 
and they obey inhomogeneous wave equations somewhat more complicated than 
(2.1). The only scattered quantity of practical significance, of course, is pv. 

Much of the analysis in this paper concerns scattering from a weak shock. There 
are two reasons for concentrating on shocks. First, experimental pressure histories 
of the kind sketched in figure 3 indicate that only the perturbations arriving in 
the first 50ms or so after the passage of either N-wave shock are likely to be 
important. It is reasonable to assume that those perturbations are associated 
with the sharp pressure rises across the shocks and are insensitive to the rate of 
expansion between them. For the purpose of computing the perturbation behind 
one shock, the other shock can safely be disregarded, and the rate of decrease 
of pressure between the two shocks can be taken as zero. To the extent that those 
approximations are valid, the solutions of the shock and N-wave problems are 
the same. Second, the solution of (2.1) for an incident shock is particularly 
simple and can be used as the kernel in a superposition integral to solve the 
general first-order scattering problem. The general solution for plane waves of 
arbitrary form is given near the end of 0 3. Meanwhile, the incident wave is to be 
regarded as a single plane and weak shock, like the leading shock of an N-wave, 
descending obliquely through the scattering region at the ambient speed of sound. 

It is convenient to choose a co-ordinate system xi tilted with respect to the 
ground so that x2 and x, are parallel to the shock and xl, which is written as x for 
short from now on, is perpendicular and increases toward the point where the 
aircraft originally sent out the shock (cf. figures 5 and 6). The origin x4 = 0 is 
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chosen to coincide with the fixed observation point where the pressure history is 
desired. Reflexion of the shock and the scattered waves at the ground can be 
neglected for the time being as though the observation point were suspended in 
mid-air; the reflected waves are taken into account by the method of images in 
0 5. If the origin of time is chosen so that the shock passes the observation point 
at t = 0, then the incident pressure wave travelling in the negative direction 
along the z-axis (i.e. the z,-axis) has the form 

p N  = Ap H ( z  + cot), 

which of course is a solution of the homogeneous wave equation. H is the Heavi- 
side unit step function, and Ap is the pressure jump across the shock in the absence 
of scattering. According to linear acoustics, vp = -pN/poco, and the other com- 
ponents of v; are zero. The scattering equation (2.1) thus assumes an extremely 

in terms of two fundamental dimensionless quantities : 

the fractional pressure perturbation; 
an effective normal Mach number, representing the com- 
bined action of turbulent velocity fluctuations and tempera- 
ture inhomogeneities. 

6(x+cot) is a delta function travelling up the x-axis. Notice that the only 
component of turbulent velocity that contributes to scattering is the one normal 
to the shock and that normal velocity fluctuations and thermal fluctuations 
scatter in exactly the same fashion in a perfect gas, their combined action being 
represented by the effective normal Mach number m(x, t). 

There is a second way of interpreting m that is worth considering. To first 
order in the small quantities ul/co and Ce/Co, 

s = @lAp, 
m = (u1-cCe)/co, 

1 +m = co/(c-ul) .  (2.3) 
The ratio co/(c - ul) is a generalized index of refraction, the ordinary index of 
refraction being co/c. The dimensionless quantity m therefore represents the 
departure of the generalized index of refraction from unity. That interpretation is 
used in 0 4 to compare the results of scattering theory with the better-known but 
someways less general results of ray acoustics. 

Because inertial and thermal scattering combine in such a simple way, it is 
possible to find the dimensionless pressure perturbation s(0, t )  at the observation 
point without considering which effect, if either, is dominant. In  $3 3-5, which 
concern the deterministic solution of (2.2) for a given scattering field m(x, t ) ,  no 
mention has to be made of the particular kind of scattering involved. A distinction 
between inertial and thermal scattering arises, however, during the statistical 
analysis of $5 6-8: ce is a random scalar field and u1 a component of a random 
vector field, so the two necessarily have somewhat different statistical charac- 
teristics. In  order to investigate the relative strengths of inertial and thermal 
scattering, it is desirable to write m in yet a third way, 

m = u1/co-8/2To, (2.4) 
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where the fact that c2 varies as T in a perfect gas has been used. As an order- 

. -  
inertial scattering u / c o  ’ 

where u is a typical turbulent velocity fluctuation. Thermal scattering is most 
significant in a boundary layer driven entirely by buoyant convection. Kinetic 
energy gained from buoyant convection in such a boundary layer eventually 
cascades into successively finer scales of turbulence and is lost to viscous dissipa- 

tion* On the buoyant production ug BIT, ---1 
dissipation u3/S 

(Townsend 1957). The length scale of the eddies has been taken as some fraction 
of the thickness S of the thermal boundary layer. Those two estimates together 
imply that thermal scattering 

inertial scattering N k) (:) ’ 
where A is the scale height c:/g of the atmosphere. The ratio A/S is likely to be 
10 or 20, but the Mach number u / c o  is never much more than l/200. Thermal 
scattering thus appears to be insignificant even in the extreme case of a thermally 
driven boundary layer, but the argument is perhaps not conclusive, and the 
contribution of thermal scattering is included in @S-S. In  any event, inertial 
scattering is never unimportant compared with thermal scattering. 

3. Solution of the scattering equation 
The formal solution of (2.2) is easy to write down, but it needs considerable 

reduction before the essential physics of scattering emerges. The reduction de- 
pends upon the fact that sound scattered to a point behind a shock at  a given time 
has a two-dimensional domain of dependence. The geometry of that surface of 
dependence is fundamental to the problem of shock-wave scattering. 

Figure 5 shows the shock SS‘ at some time t greater than zero, after it has 
passed through the observation point 0. The shock is currently located a distance 

along the x-axis behind the observation point. The appearance of the delta 
function in (2.2) implies that scattered waves are excited by intense interactions 
concentrated entirely in the plane of the shock: only as the shock front passes 
through it does an eddy emit a secondary wave. When, at  some time in the past, 
the shock passed the eddy (or thermal inhomogeneity) at  point P, the interaction 
between the two resulted in the emission of a secondary wave, which since then 
has been propagating outward from its point of origin P. Now suppose that the 
eddy at  P happens to be one of those responsible for the perturbation received 
by 0 at time t. Since the shock and the scattered wave both travel at  the ambient 
speed of sound c,, under the present approximations, the distance PO from the 
scattering centre to the observation point must equal the perpendicular distance 
PS from the scattering centre to the shock. Only points P satisfying the con- 
dition PO = PS contribute to the perturbation received a t  time t .  The locus of 

h = C o t  
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those points is a paraboloid whose focus is the observation point and whose 
directrix is the shock. That surface is called here the paraboloid of dependence. 
The vertex V of the paraboloid lies half-way between the observation point and 
the shock, and the radius of curvature of the paraboloid at  its vertex is +h. The 

FIGURE 5. Geometry of the paraboloid of dependence. 0 is the observation point, P is 
a scattering centre, V is the vertex of the paraboloid, and Sx' is the shock, which is 
propagating downward and to the left. 

axis of the paraboloid of dependence coincides with the co-ordinate x introduced 
already, and the radius R of the paraboloid satisfies the equation 

R = [Zh(x+&h)]+. (3.1) 

Distances h of interest are 50ft. and less, very much smaller than the thickness 
of the boundary layer where the scattering takes place. On the scale of the 
boundary-layer thickness, the paraboloid appears as a slender column, a wake of 
dependence so to speak, extending behind the shock (figure 6). The approximation 

R w (2hz) t  (3.2) 

is valid almost everywhere on the paraboloid for all reasonable values of h. R is 
typically 200 ft. in a boundary layer 2000 ft. thick. The slenderness of the para- 
boloid of dependence determines many of the qualitative attributes of N-wave 
distortions and leads to important analytical simplifications later on. 

Because the fluid is being regarded as unbounded for the time being, the 
formal retarded-potential solution of (2.2) is a volume integral taken over all 
space (Phillips 1933). Suppose that r is the distance from the observation point 
to a volume element dV.  Then the integrand is minus the right-hand side of ( 2 . 2 ) ,  
evaluated at  the retarded time (t-r/c, ,)  and weighted by the factor (47rr)-1. On 
the basis of the foregoing discussion, it is natural to try to transform the volume 
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integral into a surface integral over the paraboloid of dependence. The choice of 
cylindrical co-ordinates (5, R,  q5) as the variables of integration facilitates the 
transformation. The volume element dV is then RdxdRdq5, and the expression 
for the fractional pressure perturbation s(0, t )  is as follows: 

R is used here as the radial co-ordinate of a general point in space, not necessarily 
lying on the paraboloid of dependence, and q5 is the angular co-ordinate measured 
from the 2,-axis. The distance r is a function of x and R, 

r = ( x 2 +  R2)9, (3.4) 
x 

~////////////////////////////////// 
Ground 

FIGURE 6. Paraboloid of dependence viewed from a distance 
comparable to the height of the turbulent boundary layer. 

but, as the subscripts R,  r on the derivative under the integral suggest, not only 
R but also r is held fixed during the differentiation of the quantity in curly 
brackets. That is why r could be brought inside the brackets. Note that it is 
the derivative on the right-hand side of (2.2) that is being evaluated at the 
retarded time, rather than the quantity {2m(x, t )  6(x + cot)}  itself. 

The quantity inside the curly brackets in (3.3) has the form f ( x ,  R ,  r ) ,  the 
dependence on q5 and t being understood, and any such function satisfies the 
following identity for the r(x, R )  of (3.4) : 

The left-hand side of (3.5) is the total derivative off with respect to its dependence 
both on x and r ,  r being allowed to vary according to (3.4). The first term on the 
right is the derivative off with respect to its explicit dependence on x only. The 
quantity in square brackets is the rate of change off with respect to R due solely 
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to f's dependence on r .  The factor x/R converts the term into the rate of change 
off with respect to x due solely to f's dependence on r. The identity (3.5) permits 
(3.3) to be written in the following form: 

s(0, t )  = -'So 2n -a d x j r  dRjrdq5 [ (2 ax (IlmS(x r + h - r )  

a x  x am 
- ( ~ ( ; m S ( z + h - r ) ) ) ~ + -  (-1 aR 2,7 a ( x + h - r ) ] ,  (3.6) 

where the argument of m is (x, R, q5, t -r /c,)  as in (3.3). 
The argument (x + h - r )  of the delta functions is negative everywhere if h is 

negative. It follows from (3.6) that s(0, t )  = 0 for t < 0, in other words, that no 
scattered waves reach the observation point ahead of the shock. The task remains 
to simplify (3.6) for h 2 0. That task is accomplished in the following discussion, 
which involves some manipulations with delta functions. All the manipulations 
can be justified rigorously by treating a shock of finite thickness and allowing 
the thickness to approach zero after the integrals have been evaluated. A thin 
ramp shock proves particularly suitable; the delta functions in (3.6) give way 
to narrow top-hat functions. In  the discussion, the symbols (I), (11), and (111) 
denote the integrals of the first, second, and third terms in the integrand of (3.6). 

The first term in the integrand is an ordinary partial derivative and can be 
integrated immediately over x for fixed R, q5. The result is zero, since m is zero 
for large enough x and 6(x + h - r )  is zero for all x < - i h :  

(I) = 0. 

The fact that (I) is zero for h identically equal to zero is one of the points that can 
be checked by means of a shock of finite thickness. 

The second term in the integrand of (3.6) is also a partial derivative and can 
be integrated over R for fixed x, q5 and then integrated again over q5: 

Q) 

ax sgn (4 m,@, t - 1x1 /c,) + h - 1x1 1, = 

where the subscript A denotes conditions on the x-axis. The final integration 
over x yields tmv(t  - h/2cO) for h > 0, where V denotes conditions at  the vertex 
of the paraboloid of dependence. At h = 0, however, the argument of the delta 
function in the second expression for (11) is zero for all positive x, and the integral 
is infinite. The infinity is, in fact, a delta-function singularity concentrated at 
73 = 0.t The weight of the singularity can be found by integrating (11) over h in 
a small interval around h = 0, with the result that 

(11) = - S(h)So" ma(x, t - x/co) ax + +m,(t - h/2c0). 

t I am grateful to J. E. Ffowcs Williams of Imperial College for pointing out the singu- 
larity. It was omitted in the earlier version of this paper (Crow 1968), and consequently 
there appeared to be a gulf between the present theory and that of Lighthill (1953). The 
singularity brings the theories closer together and, moreover, admits a simple physical 
interpretation as a phase shift. 
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The third term in the integrand of (3.6) can also be integrated over R. The 
delta function singles out values of the quantity (x / r )  (am/aR)x,r on the surface 
defined by the condition r = x + h, which is an alternative form of the equation 
(3.1) for the paraboloid of dependence. The variation of ( x  + h - r )  with respect to 
R weights the contribution from each point on the paraboloid by the factor 

(ar/aR);l = r/R, (3.7) 

so the result of the integration is that 

where the subscript P means that the quantities are to be evaluated on the 
paraboloid of dependence. 

The fractional perturbation s(0, t )  is the sum (I) + (11) + (111). It is convenient 
to indicate that a quantity is to be evaluated at  an appropriately retarded time 
by putting square brackets around it. The quantity m,(t-h/2co) appearing in 
the expression for (11), for example, can be written as [m],, which means the 
value that m took at  the vertex of the current paraboloid at  the earlier time 
(t-h/2co) when the shock passed that point. (am/aR)z,, in (111) is likewise the 
radial component of the gradient of m, evaluated at  point P at the time (t - r/co) 
when the shock passed P. (am/aR)x,, can therefore be written as [e,.Vm],, 
where eR is the radial unit vector shown in figure 5 .  In  terms of the square-bracket 
notation, 

s(0, t )  = -S(h) [mIAdx + +[m], - 'fm dx/;d$-[e,.Vm],. X 1: 2r -&h R (3.8) 

A more suggestive expression for s(0, t )  is obtained by writing 6(h) as a derivative 
of the Heaviside function (S(h) = dH(h)/dh = c&'dH(t)/dt) and by transforming 
the double integral in (3.8) into a surface integral over the paraboloid of de- 
pendence. Thus 

where 

(3.9) 

(3.10) 

1 X 
[eR.Vm], for t 2 0, (3.11) and +(t) = - parab . d A R W  

10 for t < 0. 

The quantities R and r appearing in (3.8) and (3.11) now are associated with 
points on the paraboloid of dependence. They satisfy (3.1) and (3.4) and are 
shown in figure 5. As usual, h = cot. 

The first term on the right of (3.9) is written as a derivative of the Heaviside 
function to emphasize its role as a phase shift. Equation. (3.9) represents a per- 
turbation on the zeroth-order shock, which travels at  the ambient speed of sound 
co and arrives at  the observation point at  time 0. The real shock travels at  the 
slightly different speed (co + co - ul) and, to first-order in ul/co and co/co, reaches the 
observation point at  minus the time 7given in (3.10). First-order scattering theory 
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represents the change as the derivative of the wave-form history times the phase 
shift. Since the shock has been idealized as a discontinuity, the resulting term in 
(3.9) is singular. 

Phase shifts are not measured in sonic-bang experiments and have nothing to 
do with the kind of wave-form distortions shown in figure 3. The function @(t) 
defined by (3.11) represents the observable distortions. The first term on the 
right of (3.11) represents a purely local effect, an extra compression caused by 
the flow of air into the shock, for example, if u1 dominates co. That term is always 
very small. The second term represents a sum of contributions that arise every- 
where the paraboloid of dependence intercepts an eddy or a temperature in- 
homogeneity. The second term therefore must contain the explanation of the 
spiky fine structure of N-waves. It is interesting that only the radial component 
of Vm contributes to extensive scattering. Inertial scattering, according to the 
definition of m under (2.2), involves only the component u1 of eddy velocity 
normal to the shock. According to (3.11), moreover, only derivatives of that 
component parallel to the plane of the shock scatter extensively. 

Imagine now a succession of weak shocks passing the observation point. Each 
shock scatters independently, to the extent that non-linear steepening and 
second scattering are negligible, and each set of scattered waves satisfies an 
equation of the form (3.9) with a suitable time delay. A plane wave of arbitrary 
form can be synthesized out of infinitesimal pressure jumps, and the correspond- 
ing scattered field can be found by summing contributions like (3.9). There 
results a general solution of the first-order scattering problem for plane waves: 

(3.12) 

pN(t)  is the pressure history that would have been observed, had there been no 
scattering. The function @(t-t'),  obtained originally as the response of the 
scattering field m(x)  to a unit step function (the shock), appears in (3.12) as the 
kernel in a Duhamel's-integral solution of the general problem. Since the detailed 
state of the atmosphere changes with time, $ and 7 are implicit functions of t. 
The atmospheric changes are slight during the passage time of an N-wave, how- 
ever, so the dependence on t can be ignored for practical purposes. Equation (3.12) 
confirms, for continuous pN(t ) ,  the interpretation of r as a phase shift: the first 
two terms on the right-hand side are the leading terms of the Taylor series for 
the time-shifted but otherwise undistorted wave-form pN(t  + 7). They could 
reasonably be written as pN(t  + r ) ,  in fact, but the Taylor-series form is retained 
for the purpose of comparison with certain aspects of Lighthill's treatment of 
scattering. 

4. Infinite forward scattering, and ray acoustics 
Acoustic scattering theory, as formulated by Lighthill (1953), predicts an 

infinite rate of scattering toward a shock. In  order to understand infinite forward 
scattering in the light of (3.12), let us forget for a moment that the term rdpN/dt 
results from a phase shift and imagine that it represents a scattered wave some- 
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how distinct from the incident wave. The term can be very large for rapidly 
varying pN(t ) ,  numerically much larger than the integral in (3.12) representing 
actual wave-form distortions. For a thin shock, rdpNldt might be interpreted as 
an intense pulse dominating all other scattered waves. According to that inter- 
pretation, the total energy scattered into the field per unit area of shock has an 
average value 

ES = 'r ((pS)"ddx = "sm (-&.) dpN 2dt,  
POCO --Q1 

2 
POCO - -m 

where angle brackets denote ensemble averages. (72) is the mean-square phase 
shift at the shock front, If thermal scattering is neglected, 

(72) = ;J-; dxj~dx'([ul]a[ul]A.) = 2LX- (u3 
c; ' 

where L is the integral scale of the turbulence (cf. Lighthill 1953, p. 538) and 
X is the distance along the ray axis from the shock front to the boundary of the 
turbulent region. Assumptions have been made in accord with Lighthill's treat- 
ment that the turbulence is homogeneous and that X $ L, although neither 
assumption applies to atmospheric turbulence. Since equal volumes of turbulence 
behind the shock contribute equally to ES under the assumption of homogeneity, 
the mean energy es scattered from a unit volume of turbulence as the shock 
passes through is ESIX. As a result of combining the expressions for E T  and (+) ,  

which has the same meaning as Lighthill's equation (57). As the incident wave 
@"t) steepens toward the limit of a discontinuous shock, es diverges toward 
infinity. Lighthill concludes that a shock produces an infinite amount of scattered 
energy and removes the divergence by introducing non-linear effects extraneous 
to first-order scattering theory: most of the waves are supposed to catch up with 
the shock and recombine with it. 

It is clear from the foregoing derivation of (4.1)) however, that the apparent 
energy divergence is due entirely to the phase shift, which scattering theory is 
bound to represent in series form. The scattered energy given in (4.1) is not 
carried by wave-form distortions and would not be noticed by an observer un- 
aware of detailed phase relationships. Put another way, the scattered energy in 
(4.1) is compensated by an energy loss in the so-called incident wave (as Lighthill 
shows for sinusoidal waves in the appendix to his paper). An essential advantage 
of presenting the solution of the scattering equation in the form (3.12) is that 
genuine wave-form distortions can be distinguished from the phase shift. From 
the present viewpoint, it would be unnatural to treat the phase shift as an in- 
finitely energetic acoustic pulse requiring a special mechanism for its removal. 

The function $ ( t ) ,  which represents observable shock distortions, is finite a t  
time zero when the shock and the observation point coincide, and it remains finite 
thereafter. It is obvious from (3.11) that $ is finite after the shock passes, because 
h > 0 if t > 0, and the R-l singularity at  the vertex of the paraboloid is integrable. 
The fact that @ approaches a finite limit $(0) as t and h approach zero through 
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positive values is not so obvious and requires proof. In  this instance it is easier 
to use the double integral in (3.8) rather than the equivalent surface integral in 
(3.11). The paraboloid of dependence closes down on the x-axis as h+O, and 
R(x, h) -+ 0 throughout the scattering region. As R decreases everywhere below 
the scale of the finest eddies, 

by the divergence theorem. V;rn is the two-dimensional Laplacian of m, involving 
only the two derivatives parallel to the shock; in the Cartesian co-ordinates of 
Q 2, Vq = a2/axi+a2/axg. The subscript A refers as usual to conditions on the 
x-axis. $(t) thus tends to a finite limit $ ( O ) ,  the fractional pressure perturbation 
at the shock: 

(4.2) 

where the subscript 0 denotes conditions at  the observation point. 
Equation (4.2) is valid only for small perturbations $ ( O ) .  The amplitude of an 

ideally discontinuous and infinitesimal shock can be computed exactly by the 
method of ray acoustics, which is a special case of a general theory of the propa- 
gation of discontinuities in hyperbolic systems (Courant & Hilbert 1965, chapter 
VI, 3 4). Strong amplifications (I + g(0)) must be determined by numerical 
integration along ray tubes (Friedman et aZ. 1963), but ray acoustics can be 
linearized for small $ ( O )  to yield a closed-form solution analogous to (4.2): 

(cf. Chernov 1960; the local contribution m, is usually omitted). The quantity m 
in (4.3) is being interpreted here according to (2.3) as the departure of the gener- 
alized index of refraction from unity. Fluctuations in the index of refraction 
focus and defocus the advancing shock front, and the integral shared by (4.2) 
and (4.3) represents the accumulated amplification of the pressure jump across 
the shock. The same phenomenon causes stars to twinkle, although the acoustic 
and electromagnetic indices of refraction are of course quite different. 

To the extent that $ ( O )  is small, equations (4.2) and (4.3) are essentially the 
same, and scattering theory includes ray acoustics as a limiting case. If the per- 
turbations are large, however, then second scattering is important, and the 
assumptions underlying (3.1 1) and its limit (4.2) break down. Equation (4.2) 
suggests the obviously unphysical result, for example, that the pressure jump 
Ap{1+ $ ( O ) }  can be negative if the shock is highly defocused. Linearized ray 
acoustics also breaks down, one consequence being that (4.3) does not admit the 
possibility of the shock coming to a concentrated focus ($ (O)  -+ co) at a finite 
distance inside the turbulent region. The fully non-linear theory of ray acoustics 
remains valid for strong amplifications of an infinitesimal shock, but it gives no 
information analogous to (3.11) about the pressure field behind the shock. Any 
wave-form varying rapidly enough to satisfy the conditions of ray acoustics is 
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merely focused or defocused uniformly by the factor (1 + * ( O ) } .  Ray acoustics 
clearly cannot explain the fine structure of N-waves; the limitations of scattering 
theory must be tolerated. 

The relation between non-linear ray acoustics and first-order scattering theory, 
in the context of the shock-wave problem, can be summarized as follows. Scatter- 
ing theory i s  valid for arbitrary radii of the paraboloid of depen.dence but is restricted 
to small perturbations 11.. Ray acoustics i s  valid for arbitrary $ but applies only i f  the 
radius of the paraboloid of dependence i s  everywhere much smaller than the $nest 
inhomogeneities in the medium. In  the case of a periodic incident wave, the 
wavelength determines whether ray acoustics is applicable. A n  idealized pressure 
jump has no length scale of its own, and the size of the paraboloid of dependence 
provides the criterion. 

5. Qualitative implications of scattering theory 
Even without further analysis, the predictions of scattering theory can be 

checked against the experimental observations listed in $ 1. The perturbations 
behind the N-wave shocks are treated from here on as though they were scattered 
from isolated shocks; scattering from the expansion wave between the shocks is 
neglected. The general solution (3.12) can be used to validate that approximation 
for times after the passage of a shock that are short compared with the duration 
of the N-wave. The phase shift in the solution (3.9) of the shock-wave problem has 
no bearing on spiky distortions and does not enter the discussion of $$5-8. 
Explanations of the five attributes listed in $ 1 must rest on the function @(t) and, 
more specifically, on the integral in (3.11) over the paraboloid of dependence. 
The fact that those attributes depend mainly on the geometry of the paraboloid 
of dependence is strong evidence that scattering is the real source of sonic-bang 
distortions. The following explanations are numbered to match the attributes 
in $1: 

(1) The perturbations are random because the mean temperature and velocity 
fields merely focus or defocus the incident N-wave slightly. Scattering theory 
has been discussed so far in terms of ‘eddies’ and ‘temperature inhomogeneities’, 
but the quantity V m  appearing in (3.11) may contain mean velocity and tempera- 
ture gradients as well. It is apparent from figure 6, however, that the radius R of 
the paraboloid of dependence is much smaller than the mean-field scale, the 
height S of the boundary layer say, for any reasonable distance h between the 
shock and the observation point. As far as the mean field is concerned, the 
approximation (4.2) applies to all $( t ) ,  and the mean field focuses or defocuses 
the N-wave uniformly. Figure 7 shows how the expansion between the shocks 
rocks under the action of a mean field, The rocking certainly has nothing to do 
with the spiky structure, and, besides, it is a very small effect. If ( m )  is a typical 
Mach number or dimensionless temperature variation of the mean field, then the 
integral in (4.2) is of order S2((m)/S2) N (m), the same order as the local contribu- 
tion. Rocking is thus an O((m))  effect. (m)  may be ten times larger than a typical 
turbulent Mach number, but it will not be greater than 0.1 in the vicinity of an 
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intelligently flown aircraft. The effect of the mean field is therefore negligible. 
From now on, m(x,  t )  is treated as a random field with zero mean. 

(2) The perturbations are large because, roughly speaking, a great many 
individually weak interactions contribute to the scattered wave. Interactions 
represented by the quantity [eR . Vm], are integrated over the whole surface of 
the paraboloid of dependence. Individual interactions are O(m), but their sum 
is large. That does not explain why the perturbations tend to decrease with 
time after the passage of the shock. Since the paraboloid opens out and acquires 
more area as h increases, it might seem that the perturbations would increase. 
The reason they do not is that the interaction [eR. Vm], is weighted with the 
factor xlR, which approaches infinity as h + 0. The factor x / R  came in through 
(3.7) and represents the effectiveness of scattering almost directly forward. 

FIGURE 7. Rocking of an N-wave in a large-scale mean field: 
(a)  defocused; ( b )  normal; (c) focused. 

(3) The length scale of the perturbations is short because the paraboloid of 
dependence filters out contributions from eddies much larger than its local 
radius R(x,h).  As the integral in (3.11) is carried around a perimeter at  a fixed 
station x,  the vector eR rotates full circle, The part of Vm arising from large 
eddies remains nearly constant, so the corresponding contributions to [eR . Vm], 
cancel during the integration. Contributions from very small eddies tend to cancel 
at  random. The net result is that eddies of scale R(x ,  h) are mainly responsible 
for the wave that scatters from x and arrives at  the observation point at  time h/c,. 
The argument fails if no eddies of that scale exist, but the turbulent energy 
cascade assures a rich supply (that statement is made quantitative in Q 7).  The 
scale R(x ,  h) does not directly characterize the N-wave perturbations, since only 
a small change in h is needed to bring about a considerable change in R over most 
of the paraboloid. If h changes by an amount comparable to itself, then R also 
changes by an amount comparable to itself according to (3.2), and the paraboloid 
expands enough to intercept a new set of scattering eddies. The pressure perturba- 
tion at  the observation point must undergo a considerable change as well. The 
typical length h of the perturbations is therefore comparable to h: hfh) N h. The 
spike length h(h) is much smaller than the typical scale, R(8, h) say, of the scatter- 
ing eddies and very much smaller indeed than the integral scale of the turbulence 
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(cf. 9 6). Moreover, h(h) grows with h, in conformity with the experimental evi- 
dence (figure 3). The fine structure of an N-wave is a filtered and high compressed 
image of the turbulence that the wave has encountered. 

(4) The leading and trailing shocks share a common fine structure because the 
scattered waves that arrive at  a fixed observation point a t  a given time after 
the passage of the trailing shock come from the same paraboloid of dependence 
as those waves that arrived a similar time after the passage of the leading shock. 
The coincident paraboloids are separated in time, of course, by the 200ms 
passage time of the N-wave. They intercept slightly different eddy patterns in 
spite of their geometrical similarity, but 200 ms is not enough time for the 
wind t o  carry eddies a significant distance through the surface of a given para- 
boloid. That is the sense in which the turbulence is frozen. 

S 

B 

FIGURE 8. Reflexion of a paraboloid of dependence from the ground. The solid and 
dashed lines refer to separate instants of time, the solid line corresponding to the later 
instant. 

( 5 )  The phenomenon shown in figure 4 depends on the reflexion of incident and 
scattered waves from the ground. The analysis has been carried out so far without 
regard for the ground, as though the fluid were unbounded. If the ground is flat, 
as assumed here, then the method of images can be used to extend all the results 
obtained so far to account for reflexion. The procedure is illustrated in figure 8, 
where the oblique lines correspond to, say, the leading shock of the N-wave. The 
observation point 0 is located on a tower some distance above the ground. I f  
there were no ground, then the incident shock front would be an infinite plane 
SX', and there would be a uniform downward component of velocity behind the 
shock. The downward component of velocity, which must in fact be zero at 
ground level, can be eliminated without introducing the ground explicitly by 
assuming that a second shock RR' propagates upward in the hypothetical un- 
bounded medium. The resulting shock-wave flow satisfies the boundary con- 
dition at  the ground. The flow above ground level is the same as that realized in 
actuality, and the flow below ground level is its image. SC is the incident shock, 
C R  is the reflected shock, and R'CS' is the hypothetical image flow. The eddies 
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can be reflected through the ground in the same way, as shown at the left in 
figure 8. Thus the whole system of shocks and eddies above the ground can be 
treated as part of a combined system of real and image flows in an unbounded 
medium. The paraboloid of dependence for waves scattered by the incident shock 
SC to the observation point 0 extends upward along the axis OA. Now consider 
the shock system at a later time when the reflected shock is as far behind 0 as SC 
was; the shock system at that later time is shown by the oblique solid lines in the 
figure. The paraboloid of dependence for the reflected shock extends downward 
from 0 to the ground at G and there passes into the image flow underneath. 
Equivalently, the paraboloid can be regarded as having been reflected upward 
from G along the axis GB. The paruboloid of dependence rejlects from the ground 
just as the shock does. Waves scattered to 0 by the reflected shock emanate from 
the reflected paraboloid OGB. Even though the reflected shock is exactly as far 
behind the observation point as the incident shock was a t  the earlier time, the 
corresponding paraboloids do not coincide. Instead they follow widely separate 
paths OA and OGB, and they intercept entirely different eddies. That is why 
a microphone on a tower records different spikes behind incident and reflected 
shocks. The difference has little to do with the passage of the reflected wave 
through an extra layer of eddies between the microphone and the ground. The 
fact that scattering theory accounts so simply for the peculiar phenomenon 
shown in figure 4 is perhaps the strongest qualitative argument in its favour. 

FIGURE 9. Surface of dependence for an observation point on the ground. 

In the statistical analysis that follows, the observation point is assumed to be 
situated on the ground. The paraboloids of dependence associated with the 
incident and reflected waves then coincide. The ratio of the scattered pressure@ 
to the pressure jump across the incident shock alone is twice the right-hand side 
of (3.8), where the integral is carried over the indented paraboloid shown in 
figure 9. Reflexion also doubles the basic pressure jump, however, so (3.8) and 
(3.9) are valid as they stand if s(0, t )  is understood to be the perturbation at  the 
ground divided by the net unperturbed pressure jump at  the ground. The only 
change is that the integrals in (3.8) and (3.11) must be carried over the little cap 
above the observation point (figure 9) wherever the original paraboloid lies below 
ground level; the vector eR on the cap points upward and to the right, parallel 
to the reflected shock. The contribution from the cap is negligible, and the slight 
indentation on the paraboloid of dependence is not discussed further. 
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6. Mean-square pressure perturbation 
Scattering theory appears to explain the qualitative features of N-wave per- 

turbations, but it remains to show that @(t) compares quantitatively with the 
fractional pressure perturbations observed in experiments. Since $(t) is random, 
some statistical property is required, and the easiest one to predict analytically 
is ( @ 2 ( t ) ) .  The angle brackets denote an average over an ensemble of pressure 
histories recorded under identical flight and meteorological conditions. e(t) 
comprises the second and third terms on the right of (3.8), but only the third which 
represents extensive scattering is significant. Thus 

In order to perform the integration, one would hold point P fixed and allow P’ 
to range over the surface of the paraboloid of dependence as shown in figure 10. 
The procedure can be repeated for each P and the results summed. The heavy 
arrows in figure 10 represent the directions of the gradients of rn relevant at points 
P and P’. The vector distance from P to P’ is ci, whose scalar magnitude is denoted 
by IT in the following discussion. 

X 

FIGURE 10. Geometry of the double integration over the paraboloid of dependence. 

Figure 11 gives an indication of the size of the energy-bearing eddies that the 
paraboloid of dependence intercepts on its way up through the turbulent 
boundary layer. The co-ordinate y is the altitude, and the distance between the 
dotted lines is L(y), a rough compromise between the vertical and horizontal 
integral scales of the turbulence. L grows linearly with y in the first several hun- 
dred feet of the boundary layer and rapidly outstrips the parabolically growing 
radius R of the paraboloid of dependence. In  the upper part of the layer, L(y)  
levels off at a significant fraction of the total boundary-layer thickness 6, which 
may be 3000 ft. R is nowhere greater than about 300 ft. for significant values of h, 
so the paraboloid is slender compared not only with its own length, R < x, but 
also with the local integral scale of the turbulence, R < L. The inequalities 
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R < x and R < L apply everywhere save near the vertex of the paraboloid, and 
scattering from that small part of the surface is negligible anyway. 

The correlation ( m p m p )  between values of m drops to zero only as v sub- 
stantially exceeds the local integral scale L. The scattering correlation 
([e,  . V m ] ,  [eR.  Om],.> contains gradients of m, however, so the scale relevant 
to scattering need not be L. The argument in 5 5 concerning attribute (3) suggests 
that R rather than L is the scale of the eddies that contribute most to scattering. 
That argument is confirmed in 5 7, where the integral over P‘ in (6.1) is shown to 
converge for separations v comparable to R, under quite realistic assumptions 

FIGURE 11. Relation between the size of the energy-bearing eddies 
and the radius of the paraboloid of dependence. 

about atmospheric turbulence. Convergence for IT N R, combined with the in- 
equalities R < x and R < L, permits several simplifications of (6.1), without 
which the integral could not be evaluated analytically: 

(i) The retarded times at  P and P‘ differ by a negligible interval of order Rlc,, 
so the scattering correlation in (6.1) can be replaced with the correlation 
((eR . V m ) ,  (eR . Vm),,) involving a spatial separation only. 

(ii) Wherever the scattering correlation is significant, the geometrical factor 
(xx’/RR’) can be replaced with (x2/R2). 

(iii) Eddies on the scale R < L are practically isotropic, since whatever 
anisotropy is present at  the large scale L is lost in the cascade down to scales com- 
parable to R. The scattering correlation ((eR . V m ) ,  (eR. V m ) p )  depends only on 
the difference between q5 and #’, as a consequence, not on q5 and q5‘ separately. 
The integration over q5‘ can be carried out for the particular P shown in figure 10, 
chosen so that (eR), is aligned with the x,-axis. The remaining angular integra- 
tion over q5 can be replaced with the factor 27r. 
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(iv) At  almost all stations x,  the radius (2hx)i of the paraboloid at  P is practi- 
cally the same as its radius (2hx')t at P' for the separations a comparable to R. 
P' can therefore beregarded aslying on a cylindrical sleeve fitted to the paraboloid 
at x. The construction is shown in figure 12. The vector Q can be written in com- 
ponent form as (t,q, 6)  in the co-ordinates shown. The axes ( f l ,  q,<) are parallel 
to the original axes (x ,  x2, x3). 

FIGURE 12. Geometry of the cylindrical sleeve fitted locally 
to the paraboloid of dependence. 

Equation (6.1) simplifies considerably as a result of these first four approxi- 
mations : 

where R = (2hx)g and h = cot. The surface integration extends over the cylindrical 
sleeve, of radius R, fitted locally to the original paraboloid of dependence. Since 
(eR)P is aligned with the xz-axis, the scattering correlation in (6.2) can be ex- 
panded in terms of Cartesian derivatives of m as follows: 

Two additional properties of fine-scale turbulence lead to a further reduction 
of the expression for (@."(t)): 

(v) The turbulence is homogeneous over distances of order R. The statistical 
structure of eddies of size R varies significantly over distances comparable to L, 
but not over distances comparable to R. Let us define the structure function D 
of the scattering field m as follows: 

D(Q, x) = (imp' - mpI2). 

The co-ordinate x uniquely specifies the location of P on the surface of the para- 
boloid of dependence (cf. figure lo), and Q then specifies the location of P'. The 
atructure function is zero for Q = 0,  and for the sake of the present argument it 
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can be regarded as having the form f(x) ( ~ n  for c~ N R, where f(x) varies over 
distances N L and where n N 1 (cf. equations (7.1)). Then aD/ax N (R/L) aD/a(, 
for example, so derivatives of D with respect to x are negligible for the separations 
c~ of interest. After a little manipulation, it follows from (6.3) that 

((eB.Vm),(e,.Vm)p} = - -cos$'+-sin$' . (6.4) 
2 Y a72 ar a2D ac 1 

(vi) Velocity and temperature fluctuations at  scales of order R are nearly 
uncorrelated. The temperature and velocity fields of large-scale eddies can be 
highly correlated, especially in a thermally driven boundary layer, but the 
correlation is lost in the cascade to finer scales. According to (2.4), therefore, 

a sum of non-interacting inertial and thermal contributions. 

That completes the list of approximations that simplify the original integral 
(6.1). All of them are realistic; the most questionable is probably the assumption 
(vi) of inertial and thermal independence (Tatarski 1961, p. 194). One conse- 
quence of the local isotropy condition (iii) remains to be exploited. Suppose that 
axial structure functions for the random fields u1 and O are defined as follows: 

B,fa, x) = ( M x  + 4 - .,(.)I% 
m u ,  = ({O(x + 4 - w4)5) ,  

where the remaining arguments x2 and x3 are zero (or constant). Then local 
isotropy (iii) and independence (vi) imply that 

The origin of the thermal term is obvious, and the first term comes from a standard 
relation in the theory of solenoidal, statistically isotropic vector fields (Batchelor 
1953, p. 46). The prime here and from now on represents differentiation with 
respect to the scalar (T. Condition (iv), which has not yet been used, results in the 
following geometrical relations valid on the local cylindrical sleeve : 

(6.6) sin 4' = c/R, cos 4' = 1 + y/R, c2 = - 2Ry - r2 
(note from figure 12 that -2R < 7 < 0). Equations (6.2)-(6.6), after some 
straightforward algebra, give rise to the following expression for the mean- 
square fractional pressure perturbation, exclusive of the phase shift: 

(11.2(t)) = anso 1 "  dx (x2/R3)1[ dA(][(Ry/a2+4y2/g2+ 3Ry3/a4) 

CYl .  GO 
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The square brackets here and in subsequent equations no longer indicate retarded 
times. As complicated as it appears, the surface integral over the cylindrical 
sleeve can be evaluated analytically for structure functions D, and D, of the 
Kolmogorov form. 

7. Scattering in the Kolmogorov inertial subrange 
The Kolmogorov length I ,  which characterizes the finest eddies in a body of 

turbulence, is typically a fraction of an inch in the atmospheric boundary layer 
(Lumley & Panofsky 1964, p. 82). In  a boundary layer of height 6, the radius R 
of the paraboloid of dependence is typically (2hS)B. R can be as small as 1, there- 
fore, only if h N (118) 1, an absurdly small distance between the shock and the 
observation point. The case R < I is investigated in $ 8  for the sake of mathe- 
matical completeness, but it is clear that R 9 1 for all meaningful values of h. 
That fact, in conjunction with the argument of Q 6, means that R satisfies the 

L 9 R B l  double inequality 

and lies squarely within the inertial subrange. For B comparable to such values 
of R, Kolmogorov’s similarity theory and much experimental evidence lead to 
the following expressions for the structure functions D, and D, (Tatarski 1961, 
pp. 27-51): 

E ,  is the mean rate of dissipation of turbulent kinetic energy +(u2) by viscous 
stress, and B, is the mean rate of destruction of the analogous thermal quantity 
+(@) by conduction. The dimensionless quantities K ,  and K,  are generally 
supposed to be universal constants, though argument persists regarding both 
their magnitude and their universality. K,  equals (1.315 ...) y ,  where y is the 
constant of proportionality in the famous k-8 law for the turbulent energy 
spectrum (Ellison 1962). The best experimental results available (Grant, Stewart 
& Moilliet 1962) indicate that y M 1.44. Tatarski (1961, p. 194) finds that 
K,-j w 5.76. The estimates 

represent a fair summary of what little experimental evidence is available about 
the constants of proportionality in (7.1). The value Q of the exponents of B has 
been confirmed quite accurately, by contrast, and that is the only piece of 
information essential to the following analysis. 

The surface integral in (6.7) can easily be shown to converge for the structure 
functions (7.1), both as a/R + co and as CrlR -+ 0 (provided R > 0; cf. Q 8). Its 
convergence in the limit ulR + co, in fact, constitutes the proof that eddies of 
scale R really are responsible for scattering in atmospheric turbulence. If the 
surface integral had failed to converge as B/R -+ co, then the large-scale eddies 
would have entered the problem of evaluating ($2( t ) ) ,  and no universalexpression 
of the kind about to be derived could have been found. If it had failed to con- 
verge as B ~ R  -+ 0, then viscosity and conductivity would have had to be intro- 
duced explicitly to provide cut-offs around B = 0 (cf. equation (8.4)). Since the 

K ,  w 1.9, KO M 5.8 (7.2) 
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surface integral does converge in terms of (7.1)' it is obviously proportional to 
R2R-*. The complete integrand of the integral over x in (6.7) is therefore pro- 
portional to (x2/R3) R2R-*, which equals xQ(2h)G by virtue of (3.2). It follows 

where A,  and A,  are dimensionless constants depending on the details of (6.7). 
By substituting (7.1) into (6.7), one arrives at  the following expressions for 
A,, and A,: 

The area element dA and the variables 7 and have been scaled on the radius R, 
so the integrands in (7.4) are dimensionless, and the radius of the cylindrical 
sleeve over which the integrations are to be performed is unity. 

Because of the simple geometry of the unit cylinder, the expressions (7.4) can 
be evaluated without recourse to numerical integration. According to the geo- 
metrical relations (6.6), 

and 

for a point on the unit cylinder. Thus r~ and 7 can be eliminated from (7.4) in 
favour of '$ and 4'. The area element dA can be written as dEd4'. It is then 
straightforward to perform the integration over '$ from - 00 to 00 for fixed q5' and 
to integrate that result over 4'. The final results are as follows: 

7 = COSq5'-1, 

fT2 = '$2+72+<2 = '$2-27, 

That completes the analytical solution for the mean-square pressure perturbation 
due to scattering in the inertial subrange. Since (7.3) is valid for all meaningful 
values of h, it is correct to say that the inertial subrange of atmospheric turbu- 
lence is fully responsible for the fine structure of sonic bangs. Notice that the 
mathematical difference between inertial and thermal scattering, which appears 
considerable at  the level of (6.5), has been reduced in (7.5) to the difference 
between and g .  

It is interesting that Tatarski (1961, pp. 164-172) obtained a solution formally 
similar to (7.3) for the problem of scattering from a periodic electromagnetic or 
acoustic wave. Tatarski's equation (8.17) describes the mean-square amplitude 
fluctuations, observed at  the ground, of a sinusoidal wave propagating down 
through a turbulent atmosphere. The wavelength h of the wave must satisfy the 
same conditions that h satisfies here (i.e. L B (AS)& > I )  but in addition must 
be small compared with 1. Tatarski used Fourier analysis rather than the concept 
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of the paraboloid of dependence. He did not handle inertial scattering correctly 
(cf. Kraichnan’s appendix to Tatarski’s book), but the error appears not to have 
affected the qualitative structure of his answer. Apart from numerical coefficients, 
Tatarski’s result differs from (7.3) only in the appearance of a factor k3, involving 
the wave-number k of the incident sound, in place of the factor h+. The corre- 
spondence can be understood readily by applying the general solution (3.12) to 
a high-pitched sinusoidal wave (Crow 1968, 8 8). 

Equation (7.3) assumes a more serviceable form when the integral along the 
x-axis normal to the shock is transformed into an integral over altitude y. The 
vertex angle of the Mach cone shown in figure 1 is sin-l(l/M) for an aircraft 
travelling a t  Mach number N ,  so x(y) = [ M / ( M 2 -  l)i] y for an observation 
point directly under the flight path of the aircraft. It follows from (7.2) to (7.5) 

All information, regarding both flight and weather conditions, needed to predict 
the intensity of sonic-bang distortions is bound in the single parameter t,. When 
t = t,, the root-mean-square pressure perturbation is unity, or rather would be 
unity if first-order theory were valid in the highly perturbed region near the shock. 

FIGURE 13. Variance of a 200 ms N-wave under conditions such that t, = 2 ms. 

Figure 13 illustrates the amplitude of the distortions that would be expected 
on an N-wave of 200ms duration if t, were 2ms. The solid line is the basic 
wave-form pN(t),  and the dashed lines are p N ( t )  plus and minus the root-mean- 
square perturbation Ap ( t , / t )h,  where t is the time elapsed since the passage of the 
nearest shock. The shaded band is the region of probable occupancy for pressure 
histories recorded under conditions such that tc = 2ms. Notice that the 
apparent duration of the region of significant perturbation behind a shock is 
20-30 t,, much larger than t ,  itself. A comparison between figures 3 and 13 suggests 
that 2 ms is probably as large a value of t ,  as is likely to be encountered under 
routine meteorological conditions. Values of t ,  between 0.5 and 1.5ms are 
probably typical. These remarks are tentative, of course, since there have not 
yet been sufficient data taken under identical meteorological conditions to permit 
1% meaningful experimental evaluation of the ensemble average ($.”( t ) ) .  
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In order to get some idea of the theoretical magnitude oft,, let us suppose that 
thermal scattering is insignificant and that the atmospheric boundary layer 
behaves exactly like a wind-tunnel boundary layer under a uniform free stream. 
The assumption that thermal scattering is negligible has some justification from 
the last paragraph of § 2. The assumption about the structure of the atmospheric 
boundary layer is highly questionable, but it permits the dissipation function E,, 

to be written in a universal form, namely 

B ,  = u3,S-1W(y/S), (7.7) 

involving the skin-friction velocity u* (square-root of the ratio of wall stress to 
density), the altitude S where the mean wind speed is 99-5 % of its free-stream 
value, and a universal function W known from wind-tunnel data. Thus 

yb! = u$ S&F(y/S) 

for another known function F .  According to (7.6), F(y/S) is a measure of the 
scattering efficacy of a turbulent layer of unit thickness at  altitude y. F is plotted 
as a solid line in figure 14 for the case of a wind-driven boundary layer under zero 

2 

P(YI4 

0 0.4 1.2 

Y P  
FIGURE 14. Scattering efficacy in a wind-driven boundary layer. The solid line represents 
scattering efficacy, and the dashed line represents Reynolds stress normalized on &A$. 
S is the altitude at which the wind speed is 99.5 yo of its free-stream value. 

pressure gradient. Data for the plot are taken from Bradshaw, Ferriss & Atwell 
(1967); there is some uncertainty about the value of F in the outer 20 yo of the 
boundary layer, enough to cause a 10 yo uncertainty in the area of the plot. The 
Reynolds stress, normalized on for visual convenience, is plotted in the 
same figure as a dashed line. F is seen to be much more uniform across the 
boundary layer than the Reynolds stress. The combination of a decreasing I Z ~  

and an increasing geometrical weighting factor yQ makes all strata of the boundary 
layer about equally effective as sources of scattered waves. The area under the 
plot of F is 1.3. Thus jI yQ B! dy = 1.3~: S f ,  
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and, according to (7.6), 
t, = 1.6 [ M 1” k)? ($) , 

(M2- l)t 

for the simplified boundary-layer model under consideration. Equation (7.8) 
implies that the root-mean-square perturbation is proportional to the turbulent 
Mach number u*/co and that t, is proportional to the time S/co required for an 
acoustic wave to travel the height of the boundary layer. Suppose that 

M = 2 ,  u.+/co = 0.005, S = 3000ft. (7.9) 

The values of u* and S chosen in (7.9) are probably as large as could be expected 
in a wind-driven boundary layer. It follows from (7.8) and (7.9) that 

t, = 0.69ms, 

a figure consistent with the values of 0.5-1.5 ms implicit in experimental data 
of the sort shown in figure 3. Estimates oft, based on this model should, if any- 
thing, be low, since thermal convection is likely to be a major source of turbulent 
kinetic energy in the outer part of an atmospheric boundary layer. 

The critical time tc is an index of sonic-bang irregularities, potentially a cri- 
terion for deciding whether a supersonic airliner should be allowed to pass over 
a city under given weather conditions. But the weather conditions involved in 
(7.6) and, for that matter, in (7.8) are not subject to routine measurement. Very 
little systematic information about e,(y) exists beyond that contained in (7.8), 
and even less is known about e&). There is nevertheless reason to hope that the 
required information will become available in a decade or so. Numerical weather- 
prediction schemes, currently under vigorous development, must calculate the 
large-scale motion of the atmosphere. The large-scale flow depends strongly on 
the turbulent transport of momentum and heat through the boundary layer, 
and those transport rates in turn are coupled to the rates of dissipation. The 
dissipation functions e,(y) and eo(y) act as relaxation terms in the equations for 
the transport rates (Bradshaw et aZ. 1967; Zilitinkevich et aZ. 1967). Any successful 
weather-prediction scheme will probably have to carry the dissipation functions 
along in the computations. By the time supersonic air travel becomes common- 
place, estimates oft, may be obtainable as by-products of weather forecasts. 

8. Perturbation and disintegration of shock fronts 
The quantity $(O) is the fractional pressure perturbation just behind an ideally 

discontinuous shock. The abstract character of $ ( O )  should be borne in mind 
through the analysis that follows (especially because ($2(0)) turns out to be 
unconscionably large). Equation (4.2) gives the first-order contribution to ~ ( O ) ,  
but (4.2) rests on the limit R/Z -+ 0 ,which makes sense for a mathematical dis- 
continuity but not necessarily for a real shock of finite thickness. At the base of 
the atmospheric boundary layer, $(h/c,,) converges onto $(O)  only for distances h 
incomparably smaller than the normal thickness of an N-wave shock. 

Whatever its physical interpretation, the mean-square quantity ($2(0)) can 
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be derived by taking a rather subtle limit of (6.7) as RIl +- 0 or, more straight- 
forwardly, by squaring and averaging (4.2) under assumptions (i)-(vi) of $6:  

According to (7.6), the mean-square perturbation ($2(t))  grows without limit 
as t -+ 0 for the particular choice (7.1) of the structure functions, so it comes as no 
surprise that (8.1) diverges as (T -+ 0 for the same structure functions. The di- 
vergence is artificial, however, because equations (7.1) are invalid for IS < 1. The 
equations of motion and heat flow imply instead that 

for cr < 1, where v is the viscosity and K is the conductivity of the fluid (Tatarski 
1961, pp. 27-51). The transition from (8.2) to (7.1) takes place around CT - 1, 
since the Kolmogorov length I is defined as (v3/&. Equation (7.6) could hold 
right up to the shock only if the rate of energy dissipation were infinite. 

-+ 0 for any 
structure functions that vary as cr2. Equations (8.2) cannot be substituted 
directly into (8.1), however, because the resulting integral would diverge as 
cr -+ co. Equations (7.1) allow the integral to converge as cr --f 00 but cause it to 
diverge as (T -+ 0. Thus the viscous subrange, in which (8.2) is valid, and the 
inertial subrange, represented by (7.1), both contribute to (yk2(0)), and the 
behaviour of the structure functions in both limits (T < I and (T B 1 must be 
taken into account in (8.1) in order for the integral to converge. There is no 
deductive theory that bridges the gap between (7.1) and (8.2), but it suffices here 
to adopt a simple interpolation formula: 

The integral over (T in (8.1) obviously converges in the limit 

The subscript a stands for u or 8. Formula (8.3) reproduces both (7.1) and (8.2) 
in the appropriate limits, provided that 

Actual structure functions could hardly deviate far from (8.3) .The integrals over 
(T can easily be evaluated now, since it follows from (8.3) that 

Thus 
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where 

Equations (8.4) and (8-5) are the analogues of (7.3) and (7.5) in the foregoing 
section. The analogue of (7.6), involving an integral over altitude y and in- 
corporating the experimental values (7.2) for the supposedly universal constants 
K ,  and KO, is as follows: 

The model atmospheric boundary layer introduced in 0 7 can be used again 
to estimate the order of magnitude of (8.6). According to (7.7), 

y2ei = uTcY%G(y/cY), 

where G is another universal function related to the dissipation function W ,  
which in turn is known from wind-tunnel experiments. In  the co-ordinates of 
figure 14, G is shaped roughly like a symmetrical pyramid, with a base running 
from y/S = 0 to 1, and with a sharp maximum of 2.0 at y/S = 0.5. The area under 
the curve G(y/S) is 1.17, SO 

for the idealized model, in the absence of thermal scattering. Equation (8.7) 
states that the mean-square pressure perturbation just behind a mathematically 
discontinuous shock is proportional to the square of the eddy Mach number 
u*/co, a very small quantity, but that it is also proportional to the seven-fourths 
power of the Reynolds number u*S/v based on the skin-friction velocity and the 
boundary-layer thickness. For an atmospheric boundary layer, u*S/v is tre- 
mendous (v z 1.3 x lOv4ft.2/s). Under the conditions specified in (7.9), equation 

(Ilr2(0)) = 1.5 x lo8, (8.7) implies that 

a prediction that conveys no physical meaning, other than a suggestion that the 
region immediately behind a shock is likely to be very much disturbed by 
scattered waves under almost any atmospheric conditions. The first-order 
pressure perturbation inside a real shock of finite thickness would have to be 
calculated from the superposition integral in the general solution (3.12). Presum- 
ably the integration would smooth the extremely sharp perturbations suggested 
by (8.6) down to more reasonable values. 

N-wave perturbations do attain their largest values in the vicinity of the 
shocks (figure 3), in qualitative accord with the foregoing analysis. Apart from 
these extreme amplitude fluctuations, the most striking feature of N-wave shocks 
is that they are about 1000 times thicker than molecular viscosity alone would 
lead one to expect (Lilley 1965). Of course the very considerable thickening shown 
in figure 3(b )  is a manifestation of an inverted shock spike ( $ ( O )  < 0), but even 
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peaked shocks are 1-5 ft. thick, whereas the Taylor thickness of a 21b./ft.2 shock 
is 1.5 x lW3ft. (Lighthill 1956, p. 289). Relaxation processes other than molecular 
diffusion may operate (e.g. transfer of energy from translational to vibrational 
degrees of molecular freedom), but none seems likely to explain the observations. 
A process having a relaxation time t,, may give rise to a shock thickness of order 
cot,,, corresponding to a recorded rise time oft,., but no molecular process is avail- 
able having a relaxation time comparable to the 1-5ms rise times that are 
observed. 

Turbulence evidently must be invoked to explain the thickening of shocks as 
well as the pressure spikes behind them. A naive eddy-viscosity argument is 
surely illegitimate: turbulence acts as a viscous medium with respect to a long, 
low-frequency wave (Crow 1967), but a short, sudden wave is at issue here. 
Various alternative explanations come to mind, but the only one that bears care- 
ful analysis is that shock thickening and scattering are connected. The acoustic 
energy in the trail of scattered waves comes from somewhere, and the obvious 
possibility is that it is beaten out of the shock front by the intense interactions 
that give rise to scattering. In  the case of thermal interactions, the shock front 
is the only possible source of acoustic energy. Eddies might supply part of the 
energy arising out of inertial interactions, but the symmetry between the inertial 
and thermal forcing terms in (2.1) suggests that eddies should no more supply 
energy than passive thermal fluctuations do. According to (7.6), the energy 
density of the scattered waves trails off as (cotc/h)) behind the shock (h is being 
interpreted here as distance behind the shock at a fixed time, although it was 
introduced as cot in 0 3; the distinction is immaterial as long as h -g 6). That 
energy density is integrable provided h is given a lower bound, and the appro- 
priate lower bound is the shock thickness. If the energy of the scattered waves 
drains from the shock front, it follows that the shock must thicken an amount 
N cotc, which has just the right order of magnitude to explain the observations. 
The critical time tc acts as the relaxation time for the process of shock thickening. 
The physical picture that emerges is that the shock front disintegrates under 
concentrated interaction with turbulence, leaving a trail of deflected fragments 
which show up as the perturbations treated by first-order scattering theory. 

An obvious question can be raised against this idea: why does shock thickening 
not appear in (3.8) as a term having a non-zero mean? The answer follows from 
the energy-balance argument above : shock thickening is a second-order effect 
and cannot appear in a first-order scattering theory. Acoustic scattering theory 
is basically a means of finding successive terms in a perturbation expansion of 
p(x ,  t )  -po in powers of a typical value, m, say, of the scattering field m(x, t ) .  
For a shock, 

in the usual co-ordinates. The combination m,Sl(x, t )  was called s(x, t )  in $0 2-3 
and is the subject of first-order theory. The quantity S2(x, t), which would be 
given by a second-order theory, depends quadratically on the scattering field 
and presumably has a non-zero mean. The mean energy ES scattered per unit 
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area of shock therefore contains O(rnz) contributions from both (Sq) and 

If the argument is correct that scattering leaves the net acoustic energy un- 
changed (at least to O(m2,)), then the integral along the x-axis must be zero. 
Since (82,) is positive, (8,) must be mainly negative, which is what one would 
expect of an (S,) representing shock thickening.? 

Acoustic scattering theory is a rather delicate affair even to first order 
(Batchelor 1957), so a second-order theory might require a much deeper analysis 
of the interaction between sound and turbulence than has been conducted so far. 
Since shock thickening appears to be a result of second-order scattering, on 
the other hand, the technological rewards of such an analysis would be very great 
and should serve as a stimulus. 
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